Skip to main content

Your submission was sent successfully! Close

Thank you for signing up for our newsletter!
In these regular emails you will find the latest updates from Canonical and upcoming events where you can meet our team.Close

Thank you for contacting us. A member of our team will be in touch shortly. Close

  1. Blog
  2. Article

Carmine Rimi
on 2 September 2019

Digest #2019.09.02 – The why of Kubeflow


  • AI Tales: Building Machine learning pipeline using Kubeflow and Minio – Understand the Kubeflow value proposition in an entertaining format. The story starts with Joe, the neighbourhood Machine learning enthusiast. Joe reads a few things, becomes an expert, and then the real fun begins. He quickly runs into problems with portability, DevOps, scaling, performance, and cost. Enter Kubeman (or Kubeperson?), who personifies Kubeflow, and saves the day!
  • Basics of Data Science Product Management: The ML Workflow – Another look at the complicated space that Kubeflow helps solve. “Something I quickly learned was that managing ML products is difficult because of the complexities and uncertainties involved with the different steps in the machine learning workflow” – (1) Review of related literature; (2) Data gathering & processing; (3) Model training, experimentation, & evaluation; (4) Deployment
  • Hardware Science: Researchers demonstrate all-optical neural network for deep learning – In a key step toward making large-scale optical neural networks practical, researchers have demonstrated a first-of-its-kind multilayer all-optical artificial neural network. The next generation of artificial intelligence hardware will be much faster and exhibit lower power consumption compared to today’s computer-based artificial intelligence.
  • Hardware Science: Quantum computing should supercharge this machine-learning technique – Researchers from IBM and MIT show how an IBM quantum computer can accelerate a specific type of machine-learning task called feature matching. Feature matching is a technique that converts data into a mathematical representation that lends itself to machine-learning analysis. Using a quantum computer, it should be possible to perform this on a scale that was hitherto impossible.

Related posts


Andreea Munteanu
17 March 2021

Kubeflow operations guide

Ubuntu Article

Operating MLOps stacks alike Kubeflow in an increasingly multi-cloud world will be a key topic as this market and Kubernetes adoption grow. Kubeflow operations webinar To discuss this topic, Canonical is holding a live webinar next week, on 23rd of March, 5PM UTC. Besides the key points listed below, the webinar will also have a ...


Rui Vasconcelos
8 March 2021

Latest community videos

Ubuntu Article

MLOps community jewels The MLOps community continues to grow and gift us with great content and discussions around the topic! Here are a couple of interesting discussions – a long one (1h) about Kubeflow, feature stores, and other platforms in the MLOps space, and a short one (3 min) on how to manage dependencies: Sneak ...


Andreea Munteanu
22 February 2021

Still figuring out what is Kubeflow?

Kubeflow Article

Kubeflow has become quite popular in the MLOps community as the tool that enables data science teams to automate their workflows from data preprocessing to model deployment on Kubernetes. However, with it’s made of many pieces, and while it keeps evolving, how can you effectively start using? Learn Kubeflow from online courses Started by ...